Impact of Prescribed burning In the Flint Hills Region

Dr. Zifei Liu zifeiliu@ksu.edu May 10th, 2018

Biological and Agricultural Engineering

How will smoke affect me?

Why burning is important?

K-State, KDHE Land managers

How to reduce smoke impact?

April 16, 2018

Outline

- The impact of smoke
- The ozone story
- Why do we burn? When is the best time to burn?
- Monitoring smoke using drone

The impact of smoke

Largest remaining intact tallgrass prairie 7 million acres of rangeland Approximately 1/3 of the rangeland are burned each year 21 counties in Kansas and Oklahoma

Source: Kansas Geological Survey Open-file Report 2016-1 Flint Hills Discovery Center Foundation

Satellite fires, 4/1 to 5/1, 2017

National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectrometer (MODIS) fire products Fire Information for Resource Management System (FIRMS)

Advancer 2017-04-01 2017-05-01 Combined NRT + SF VIIRS 375m MODIS / Aqua MODIS / Terra Near Real Time Standard Processing VIIRS - Corrected Reflectance (true 2017-04-01

ast Updated: 2018-03-06 13:24 GMT /ersion: VIIRS 375 m

Acres burned

Average: 2.1 Million acres Median: 2.5 Million acres

(Mohler and Goodin, 2012)

Smoke and air quality

Air pollutants	Observed concentrations in literature		NAAQS 24 hr
	At the fires	At downwind communities	standards
PM _{2.5}	148-6865 μg/m ³	63-400 μg/m ³	35 μg/m ³
			11

The Tallgrass monitoring site

Five PM_{2.5} source categories at the Tallgrass site (Results from Unmix receptor modeling)

Five PM_{2.5} source categories at the Tallgrass site (Results from PMF receptor modeling)

U4-Primary smoke particles

U5-Secondary organic particles

Daily PM_{2.5} at the Tallgrass site

Highest daily PM_{2.5} in April vs. acres burned (Tallgrass site, 2002-2014)

Acres burned (Million)

Smoke PM_{2.5} at the Tallgrass site and the Kansas City site in April (in µg/m³)

- Tallgrass site
- Kansas City site

In April, on average, smoke contributed $4.4 \ \mu g/m^3$ at Tallgrass site, and $1.1 \ \mu g/m^3$ at Kansas City site.

Human hair (50-70µm)

• Can reach deeper into human respiration system

 Size near the wavelength of visible light (0.4-0.7µm) can efficiently scatter light and reduce visibility.

PM10 (10μm) PM_{2.5} (2.5μm)

Composition of smoke PM

EC ~2-20%

Inorganic ash ~10-30%

Smoke PM could be more damaging to human health than normal urban particles.

OC ~60-70%

	Observed VOC/SVOC in literature		NIOSH or
	At the fires	At downwind communities	OSHA 8-hr exposure limits
Acrolein	0.018-0.071ppm	0.009 ppm	0.1 ppm
Formaldehyde	0.03-0.47 ppm	0.02-0.047 ppm	0.016 ppm
Isocyanic acid		600 ppb	
PAHs			200 μg/m ³
• BaP	0.10-0.16 μg/m ³	0.007 µg/m ³	
• Acenaphthene	0.57-1.53 μg/m ³	0.83-0.89 μg/m ³	
• Naphthalene	0-3.27 μg/m ³	0-3.53 μg/m ³	
• Phenanthrene	0.38 μg/m ³		

Air pollutants –	Observed mixing ratios in literature		NAAQS
	At the fires	At downwind communities	8-hr standards
СО	1-140 ppm	1-6 ppm	9 ppm

Air pollutants –	Observed mixing ratios in literature		NAAQS
	At the fires	At downwind communities	8-hr standards
O ₃		Up by 50 ppb	70 ppb

- Strong oxidant that damages cells lining the respiratory systemCough
- Sore or scratchy throat
- Pain with deep breath, or chest pain
- Fatigue
- Aggravation of lung diseases

Kansas 8hr O₃ design values (ppb)

(Data from KDHE, 2010 and 2015. 5-Year Ambient Air Monitoring Network Assessment)

21

Consequences of nonattainment

- Photochemical modeling
- Economic development curtailed

• Potential for loss of highway funds and restrictions on how highway funds can be spent.

• Expanded burning restrictions

The O₃ story

29

Interaction of fire, atmospheric composition and climate in the earth system (RF: radiative forcing)

Nine O₃ monitoring sites

Daily max 8hr O₃ at the Konza Praire site (2002-2013)

32

O₃ regression models

R²=0.66 to 0.76

• $O_3(d) = c_1 + c_2 \sin\left(\frac{2\pi(d+283)}{365}\right)$ + $c_3 [O_3 \text{ on the previous day}]$ + $c_4 [\text{Air temperature}]$ + $c_5 [\text{Solar radiation}]$ - $c_6 [\text{Relative humidity}]$

Daily max 8hr O₃ at the Konza Praire site (2002-2013)

34

Daily max 8hr O_3 at the Wichita Health Department site (2001-2016)

Multi-year average O₃ at different sites (non-rainy days in April)

Measured O_3 (ppb) Modeled O_3 (ppb)

Average O₃ model residuals in April (non-rainy days) (Likely due to burning)

Konza Prairie site3.1 ppbTopeka site2.4 ppbThree Wichita sites0.7, 1.3, 1.7 ppbThree Kansas City sites0.4, 1.2, 1.5 ppbCedar Bluff site0.7 ppb

2001-2016

	Average of days with O ₃ >70ppb in April (47 days in total)	April average	
Daily Max 8hr O ₃	77±5 ppb	43.9-53.2 ppb	
O ₃ on the previous day	60±11 ppb	-	
Daily maximum air temperature	24.5±4.5 °C	20.7±5.5 °C	
T_{max} - T_{min}	16.6±5.3 °C	12.3±5.0 °C	
Solar radiation	738±279 Langley	607±304 Langley	
Relative humidity	54±10 %	67±14 %	
Wind speed Likely due to burnin	$3.4\pm1.8 \text{ m/s}$	4.1±2.0 m/s	
O ₃ model residuals	21±9 ppb	-	

Acres burned vs. highest 8hr O₃ in April

Acres burned vs. highest 8hr O₃ in April

For every one million increase of burn acres, the highest 8-hour O_3 mixing ratios increased around 9 ppb.

Acres burned vs. # of days with 8hr O₃ >70ppb in April

When the acres burned were larger than or equal to 1.9 million, $O_3>70$ ppb occurred in April at least at one of the ten monitoring sites.

Fire count vs. highest 8hr O₃ in April

Daily fire count vs. highest 8hr O₃ in April

- When daily fire count >750, O_3 >70 ppb occurred in all the 7 days.
- When daily fire count is between 375 to 750, O₃>70 ppb occurred in 15 out of 27 days (56%).
- When daily fire count is between 1 to 375, O₃>70 ppb occurred in 27 out of 347 days (8%).
- When daily fire count is 0, $O_3 > 70$ ppb did not occur.

- When daily burned acres >0.5M, $O_3 > 70$ ppb is most likely to occur.
- When daily burned acres is between 0.25M to 0.5M, the chance of $O_3>70$ ppb is 56%.
- When daily burned acres < 0.25 M, the chance of $O_3 > 70$ ppb is 8%.
- When there is no burning, $O_3 > 70$ ppb is not likely to occur.

Daily fire count vs. highest 8hr O₃ in April

- When daily burned acres >0.5M, $O_3>70$ ppb is most likely to occur.
- When daily burned acres is between 0.25M to 0.5M, the chance of O₃>70 ppb is 56%.
- When daily burned acres <0.25 M, the chance of $O_3 > 70$ ppb is 8%.
- When there is no burning, $O_3 > 70$ ppb is not likely to occur.

When daily fire count is between 375 to 750, or daily burned acres is between 0.25M to 0.5M

	Average (7 days)	April average	
Daily maximum air temperature	22.5±5.0 °C	20.7±5.5 °C	
Solar radiation	638±218 Langley	607±304 Langley	
Relative humidity	51±6 %	67±14 %	
Wind speed	2.0±0.7 m/s	4.1±2.0 m/s	

When daily fire count >750, or daily burned acres >0.5M

	Average of days with $O_3 > 70$ ppb (15 days)	Average of days with $O_3 < 70$ ppb (12 days)	April average
Daily maximum air temperature	24.4±5.4 °C	19.2±4.1 °C	20.7±5.5 °C
Solar radiation	697±244 Langley	596±98 Langley	607±304 Langley
Relative humidity	54±10 %	54±12 %	67±14 %
Wind speed	2.4±1.1 m/s	2.9±1.2 m/s	4.1±2.0 m/s

When daily fire count is between 1 and 375, or daily burned acres < 0.25M

	Average of days with $O_3 > 70$ ppb (27 days)	Average of days with $O_3 < 70$ ppb (320 days)	April average
Daily maximum air temperature	24.8±3.8 °C	20.4±6.5 °C	20.7±5.5 °C
Solar radiation	705±268 Langley	610±283 Langley	607±304 Langley
Relative humidity	58±11 %	62±13 %	67±14 %
Wind speed	4.0±1.9 m/s	4.2±2.0 m/s	4.1±2.0 m/s

Modeling O₃ (ppb) in April

 $R^2=0.55$

April average Fire count 82±166 O_3 on the previous day 55±11 ppb Daily maximum air 20.7±5.5 °C temperature Solar radiation 607±304 Langley Wind speed 4.1±2.0 m/s **Relative humidity** 67±14 %

When seasonal burned acres is <1.5 million

When seasonal burned acres is <1.5 million

When seasonal burned acres is between 1.5 and 2.5 million

When seasonal burned acres is between 1.5 and 2.5 million

56

When seasonal burned acres is between 1.5 and 2.5 million

When seasonal burned acres >2.5 million

When seasonal burned acres >2.5 million

When seasonal burned acres >2.5 million

When seasonal burned acres >2.5 million

Highest 8hr O₃ in April vs. acres burned at the three sites around Wichita

Sedgwick site (2009-2017)

Wichita Health Department site (2001-2017)

Peck site (2001-2017)

62

Highest 8hr O₃ in April vs. acres burned at the three sites around Kansas City

63

O₃ levels in April before and after the Flint Hills Smoke Management Plan (SMP) (based on measurements from the nine regulatory monitoring sites in Kansas)

	Before the SMP was implemented		After the SMP was implemented			
Acres burned (Million)	Year	# of days with 8hr $O_3 > 70$ ppb	Highest 8hr O ₃	Year	# of days with 8hr $O_3 > 70$ ppb	Highest 8hr O ₃
<1.9	2002	0	64	2012	0	64
	2007	1	73	2013	0	62
1.9-2.0	2001 2004 2006	2 2 4	76 74 78	2015	1	77
2.4-2.5	2010	3	82	2014 2017	2 0	85 70
2.7-2.8	2003 2008 2011	2 1 4	76 74 84	2016	1	103
3.2-3.5	2005 2009	3 3	77 95			

Why do we burn? When is the best time to burn?

Timing of burns

- Forage production
- Plant species composition
- Soil moisture
- Cattle weight gain

- Relative humidity
- Wind speed
- Wind direction
- Continuous burn window

Does burning have to be restricted to a narrow window in April?

Forage production

(McMurphy and Anderson, 1963; Owensby and Anderson, 1967); little statistical basis

• Plant composition

Burn earlier in the spring increases cool-season grasses and has little impact on warm-season grasses

Woody species

No scientific data indicated April burning is superior; frequent burning is most important

• Soil moisture

Much of the data are equivocal

• Animal performance Only one problematic study (Anderson et al., 1970); potentially misleading

(Towne and Craine, 2016)

How many days are actually available to conduct prescribed burns?

Burn day

- 8am to 6pm
- T=1.7 to 43.3°C
- RH=25 to 80%
- V=1.07 to 4.02 m/s
- No rain
- 3-hour continuous burn window

Based on Oklahoma Mesonet hourly weather data (Weir, 2011)

Burning outside the traditional burn season?

- A 20-year study that looks at the consequences of burning Flint Hills prairie at different times of the year.
- It finds that burning outside of the current late spring time frame has no measurable negative consequences for the prairie and, in fact, may have multiple benefits.

(Towne and Craine, 2014)

Burning outside the traditional burn season?

• Although early studies considered any increase in coolseason grasses as undesirable, that response could actually be beneficial.

(Towne and Craine, 2016)

• A mix of fire seasons, may be necessary to maintain prairie diversity.

(USDA, 2009)

Most land management objectives can be achieved with growing-season burns.

•

(Weir et al., 2011)

The goal

• Keep prescribed burning, but burn in a manner that minimize adverse environmental and social effects.

Objectives

- To avoid exceedances of the NAAQS.
- To receive an exemption/flag in the event of an exceedance of the NAAQS (Exceptional Event).

NAAQS: National Ambient Air Quality Standards

Two strategies

Reduce smoke production

- Frequency of burns
- Managing fuel load and fuel moistures
- Ignition and burn technique
- Reduce smoldering

Reduce impact of smoke

- Timing of burns
 - Allow for adequate smoke dispersion
 - Minimize exposure of sensitive populations
 - Avoid high O_3 day
Timing of burns

Smoke modeling tools

Monitoring smoke using drone

Objectives of the test

- Define sampling packages and standard operating procedures that can be used on unmanned aircraft systems (UAS) for the collection of smoke emission and meteorological data.
- Collect smoke emissions data to develop smoke emission factors that best represent the Flint Hills fires and compare to the current FCCS fuelbed#131 to determine if the current defaults are representative.
- Collect black carbon and thermal image data to groundverify the models NASA have created from MODIS and VHRRS satellite data.

The sampling packages

Drone: K-State Polytech DJI S1000 multi-rotor (8 rotors) aircraft

Drone#1: Continuous measurements O₃: POM, 2B Tech.; PM_{2.5}: MIE pDR-1500, Thermo Sci.

Drone#2: Integrated measurements Sampling bags for NO/NO_x/NO₂, CO/CO₂, and VOCs PM: Air-O-Cell impactor

Drone#3: MA200 black carbon monitor; Thermal sensor

Around 180 acres burned for the test on April 16, 2018

X

that

Ozone (ppb)

٠	8 - 59
٠	60 - 72
٠	73 - 84
	85 - 105
٠	106 - 139
٠	140 - 208
٠	209 - 303

Preliminary results

NT vs Ozone

