BAE 820 Physical Principles of Environmental Systems

Estimation of diffusion Coefficient

Dr. Zifei Liu

Diffusion mass transfer

Diffusion mass transfer refers to mass in transit due to a species concentration gradient in a mixture

- It is a spontaneous mixing process aiming at homogenization of the mixture.
- Must have a mixture of two or more species for diffusion to occur.
- The driving force for diffusion is the concentration gradient of the species.
- Physical origins of diffusion is due to random molecular motion. The existence of thermal motion provides the driving force for molecular diffusion.
- Mass transfer by diffusion is analogous to heat transfer by conduction.
- There are two main mechanisms of mass transfer: diffusion and convection.

Diffusion mass transfer

- Consider two species A and B at the same T and p, but initially separated by a partition.
- Diffusion in the direction of decreasing concentration dictates net transport of A molecules to the right and B molecules to the left.
 The diffusion tends to result in uniform concentrations of A and B.

Steady-stead equimolar counter diffusion

$$N=N_A+N_B=0$$

The molar flux is

$$N_{A} = -CD_{AB}\frac{dx_{A}}{dz} + X_{A}(N_{A} + N_{B}) = -CD_{AB}\frac{dx_{A}}{dz}$$
$$N_{B} = -CD_{BA}\frac{dx_{B}}{dz} + X_{B}(N_{A} + N_{B}) = -CD_{BA}\frac{dx_{B}}{dz}$$
$$D_{AB} = D_{BA}$$

The concentration profile is described by

$$\frac{dN_A}{dz} = \frac{d^2C_A}{dz^2} = C\frac{d^2x_A}{dz^2} = C\frac{d^2x_A}{dz^2} = C\frac{C_A}{dz^2} = C\frac{C_A$$

Engineering

Biological and Agricultural

Knowledge ^{for}Life 4

Steady-stead diffusion of A through nondiffusing B

The molar flux is

$$N_{A} = -CD_{AB} \frac{dx_{A}}{dz} + X_{A} (N_{A} + N_{B}) = -CD_{AB} \frac{dx_{A}}{dz} + X_{A} N_{A}$$
$$N_{A} = -\frac{CD_{AB}}{(1 - xA)} \frac{dx_{A}}{dz}$$

 $N_{B}\approx 0$

The concentration profile is described by

$$N_{A} = -\frac{CD_{AB}}{(Z - Z_{1})} ln(\frac{1 - x_{A}}{1 - x_{A1}})$$
$$x_{A} = 1 - (1 - x_{A1}) exp(\frac{N_{A}(Z - Z_{1})}{CD_{AB}})$$

Engineering

Biological and Agricultural

Diffusion coefficient for gas

• In gases the diffusion coefficient is proportional to the average molecular velocity times the mean free path.

$$D = \frac{\lambda v_{ave}}{3}$$

Where

- v_{ave} is the average molecular velocity, $v_{ave} = (8RT/\pi M)^{1/2}$ - λ is mean free path, $\lambda = \frac{K_B T}{\sqrt{2}\pi d^2 P}$
- $-\tau$ is the average time between collisions.

Therefore,

• Diffusivity for gases are inversely proportional to pressure, and varies with the absolute temperature to around the 1.5 power.

Average molecular velocity

In kinetic theory, the average kinetic energy of the molecules can be expressed in terms of the kinetic temperature. The total three dimensional kinetic energy of a particle is given by

$$\frac{1}{2}$$
mv_{rms}²= $\frac{3}{2}$ k_BT

Therefore, the root mean square molecular velocity

$$V_{\rm rms} = \sqrt{\frac{3kBT}{m}} = \sqrt{\frac{3RT}{M}}$$

Where m is mass of a single molecular, M is molecular weight.

The speed distribution for the molecules of an ideal gas is given by the Maxwell distribution, which result in

8RT

 πM

$$V_{avg} = \sqrt{0}$$

Biological and Agricultural
Engineering

Biological an

Diffusion coefficient in binary gas mixtures

The mean free path of molecules of A, λ_A , in a binary gas mixture of A and B can be related to the binary diffusivity D_{AB} by

$$\frac{D_{AB}}{\lambda_A v_A} = \frac{3\pi}{32} (1 + \frac{M_A}{M_B})$$

Where

- v_A is the mean molecular speed of species A, $v_A = (8RT/\pi M_A)^{1/2}$;
- M_A and M_B are molecule weight of the two species respectively.

Diffusion coefficient in binary gas mixtures

• Kinetic theory provides an explicit relation for diffusion coefficient in binary gas mixtures

$$\mathsf{D}_{\mathrm{AB}} = \mathrm{CT}^{3/2} \frac{\left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{\frac{1}{2}}}{P \sigma_{AB}^{2} \Omega}$$

Where

- D_{AB} is the diffusion coefficient of gas mixture of species A and B, cm²/s; - C = 0.01883;
- T is temperature, K;
- M_A and M_B is molecule weight of the species, g/mol;
- P is pressure, Pa;
- $-\sigma_{AB}$ is characteristic length of molecular separation at collision, Å;
- Ω is the diffusion collision integral, and is a function of k_BT/ ϵ , where k_B is the Boltzmann constant, ϵ is a molecular energy parameter.

Values of σ_{AB} and ϵ can be found in literature for some species.

Diffusion coefficient for liquid

- The theory of diffusion for liquid system is not nearly as advanced as for gas system.
- D for liquid is around 10⁴-10⁵ times smaller than that for gas.
 - Mean free path much smaller (typically less than a molecule diameter).
- For large molecule in very dilute solution, The Stokes-Einstein equation can be used to estimate D.

Einstein's law of diffusion

 Thermal energy imparts to each molecule a kinetic energy proportional to T. The kinetic energy may also be considered as the product of the force acting on the particle (proportional to friction factor ξ) times the distance travelled (proportional to diffusion coefficient D). In 1905, Einstein derived an equation that relate the diffusion coefficient to thermal energy.

$D\xi = k_{B}T$

Where k_B , the Boltzmann constant, is the ratio of the molar gas constant R to Avogadro's number, and is the gas constant per molecule, $k_B = 1.38 \times 10^{-23} \text{JK}^{-1}$.

• The equation connects the macroscopic diffusion coefficient to the microscopic friction factor of the particle (molecule).

$$\mathbf{D} = \mathbf{k}_{\mathbf{B}} \mathbf{T} / \boldsymbol{\xi} = \frac{\mathbf{v}}{F} \mathbf{k}_{\mathbf{B}} \mathbf{T} = \boldsymbol{\mu} \mathbf{k}_{\mathbf{B}} \mathbf{T}$$

Where $\mu = \frac{v}{F}$, is the ratio of the particle's terminal drift velocity to an applied force, it is also called mobility.

The Stokes-Einstein equation

• When Stokes law is obeyed, the friction factor

 $\xi = 6\pi r\eta$

Therefore,

 $D = k_B T/(6\pi r\eta)$

Where r can be estimated from the mass of particle.

$$r = (\frac{3m}{4\pi\rho_s})^{1/3}$$

• If sedimentation rate measurements are available,

$$k_{\rm B}T/D = \xi = \frac{\frac{4}{3}\pi r^3(\rho_{\rm s}-\rho_{\rm l})g}{v_t} = \frac{m(1-\rho_{\rm l}/\rho_{\rm s})g}{v_t}$$

Magnitude of the diffusion coefficient

• For particles in water at 20°C,

$$D = k_{\rm B} T / (6\pi r \eta) = \frac{1.38 \times 10^{-23} \text{JK}^{-1} \times 293 \text{K}}{6\pi \times 1.005 \times 10^{-3} \text{kg} / (m \cdot s) \cdot r} = \frac{2.15 \times 10^{-19}}{r}$$

Calculated values using the above equation			Measured D for some particles	
r (µm)	r (Å)	$D (cm^2/s)$	III water at 20 C	
1	10000	2.15×10-9	Serum Albumin	6.1×10 ⁻⁷
0.1	1000	2.15×10 ⁻⁸	Sucrose	4.7×10 ⁻⁶
0.01	100	2.15×10-7	Li ⁺	9.4×10 ⁻⁵
0.001	10	2.15×10 ⁻⁶	Na ⁺	1.2×10 ⁻⁵
0.0001	1	2.15×10-5		

Limitation of the Stokes-Einstein equation

- The Stokes-Einstein equation is valid only if the molecules of the diffusing species are very large compared to the solvent molecules. It provide a start point for a number of semi-empirical correlations of diffusivities.
- The Stokes-Einstein equation underestimate real diffusivities because the actual drag on the molecules is less than postulated by the equation.
 - In the Stokes-Einstein equation , D varies as $V^{-\frac{1}{3}}$ (i.e. r^{-1});
 - In reality, D varies as V^{-0.6}.

Diffusion coefficient in dilute liquid mixtures

• The Wilke and Chang equation (1955)

$$\mathsf{D}_{AB}^{\circ} = 7.4 \times 10^{-8} \frac{(\Phi_{B}M_{B})^{\frac{1}{2}}T}{\eta_{B}V_{A}^{0.6}}$$

Where

- D_{AB}° is the diffusion coefficient of species A infinitely diluted in species B, cm²/s;
- Φ_B is association factor for the solvent (2.26 for water, 1.5 for ethanol);
- M_B is molecule weight of the solvent, g/mol;
- T is temperature, K;
- $-\eta_B$ is solution viscosity, mPa s=cP;
- V_A is molar volume of solute A at its normal boiling point, cm³/mol.

Diffusion coefficient in concentrated liquid mixtures

- Diffusion coefficients in binary liquid mixture can be strong function of composition.
 - The Vignes equation (1966)

 $D_{MS} = (D_{AB}^{o})^{xB} (D_{BA}^{o})^{xA}$

Where

- D_{MS} is Maxwell–Stefan multicomponent diffusion coefficient.
- D_{AB}° is the diffusion coefficient of species A infinitely diluted in species B;
- D_{BA}° is the diffusion coefficient of species B infinitely diluted in species A;
- $-x_A$ and x_B are mole fraction of species A and B respectively.

The Fick diffusivity can be obtained from D_{MS} by multiply a thermodynamic factor Γ , which can be estimated from activity coefficient models in literature.

$$\mathbf{D} = \mathbf{D}_{\mathbf{MS}} \ \boldsymbol{\Gamma}$$

Example values of diffusion coefficient

Phase	Species pair (solute-solvent)	Temperature (°C)	$D (cm^2/s)$
Gas	Water-Air	25	0.282
	O ₂ -Air	25	0.176
	NH ₃ -Air	25	0.259
Liquid	O ₂ -Water	25	2.1×10 ⁻⁵
	NH ₃ -Water	25	1.64×10 ⁻⁵
	H ₂ S-Water	25	1.41×10 ⁻⁵
Solid	H ₂ -Iron	10	1.66×10 ⁻⁹
	H ₂ -Iron	100	124×10-9

Diffusion in small pores

- When diffusion occurs in small pores, and pore diameter is less than mean free path, physical constraints of the pores will influence the rate of diffusion. This is know as Knudsen diffusion.
 - For a cylindrical pore

$$D_{k} = = \frac{D_{pore} v_{ave}}{3} = = \frac{D_{pore}}{3} \sqrt{\frac{8RT}{\pi M}} \approx 9700 r \sqrt{T/M}$$

• Where T is temperature in K, M is molecule weight, r is the radius in cm, $D_k =$ is Knudsen diffusivity in cm⁻²/s.

$$\frac{1}{D_{pore}} = \frac{1}{D_{AB}} + \frac{1}{D_k}$$

•

Biological and Agricultural Engineering Knowledge ^{for}Life 18

Problem solving #4

- 1. Calculate the root mean square velocity and average velocity of an N_2 molecule at room temperature (25°C).
- Estimate the diffusivity of a 1µm diameter particle in air at 20°C and 1 atm.

Problem Solution #4-1

- T = (25+273)K = 298K
- M = 28 g/mol=0.028kg/mol
- R = 8.314 J/mol K

Problem Solution #4-2

• For a 1µm diameter particle in air at 20°C and 1 atm, the Cunninghan correction factor can be estimated to be 1.17.

• $D = k_B TC_c / (6\pi r\eta) = \frac{1.38 \times 10^{-23} JK^{-1} \times 293 K \times 1.17}{6\pi \times 1.8 \times 10^{-5} kg/(m \cdot s) \times 0.5 \times 10^{-6} m}$ = 2.8×10⁻¹¹m²/s