BAE 820 Physical Principles of Environmental Systems

Stokes' law and Reynold number

Dr. Zifei Liu

Biological and Agricultural Engineering

The motion of a particle in a fluid environment, such as air or water

- $m\frac{dV}{dt} = F(t) F_d \frac{1}{2}\frac{4}{3}\pi r^3 \rho \frac{dV}{dt} \frac{4}{3}\pi r^3 \frac{dp}{dr} F_B$ Where,
- F(t) is external force.
- F_d is the resistance of the medium for a constant velocity.
- The third term represents the resistance to accelerated motion of the particle.
- The fourth term represents the resistance due to the pressure gradient across the particle.
- The fifth term is the Basset force (F_B) , which represents the energy recovery expended in setting the medium itself in motion.

Biological and Agricultural Engineering

Newton's resistance law

$$F_d = \frac{1}{2} c_d \rho v^2 A$$

- F_d is the drag force of the fluid medium ρ is the mass density of the fluid
- v is the speed of the object relative to the fluid
- A is the projected area, for a sphere, $A = \pi r^2$
- c_d is the dimensionless drag coefficient, which is not a constant but varies as a function of speed, flow direction, object position, object size, fluid density and fluid viscosity.

Stoke's law

Under laminar flow conditions (undisturbed flow), the force of viscosity on a small sphere moving through a viscous fluid is given by

 $F_s = 6\pi r \eta v = \xi v$

 F_s is the frictional force – known as Stokes' drag. η is the dynamic viscosity, kg /(m·s).

- r is the radius of the spherical object, m.
- v is the speed of the object relative to the fluid, m/s.
- ξ is the friction factor, kg·m/s², in which 2/3 is due to skin friction, and 1/3 is due to pressure forces.

Under laminar flow conditions, setting the two expressions equal to each other we get

$$6\pi r\eta v = \frac{1}{2} c_d \rho v^2 A$$

Therefore,

$$C_d = 12 \eta / r\rho v = 24\eta / D\rho v$$

• D is the diameter of the spherical object

Define Reynold number,

 $R_e = D\rho v/\eta = Dv/\nu$

• Where $v = \eta/\rho$, is called the kinematic viscosity, m²/s.

So, the dimensionless drag coefficient

 $C_d = 24/R_e$

The Reynold number (R_e)

 R_e is a dimensionless quantity that is used to characterize different flow regimes, such as laminar or turbulent flow. R_e can be defined as the ratio of inertial forces to viscous forces and quantifies the relative importance of these two types of forces for given flow conditions.

 $R_{e} = D\rho v / \eta = \frac{\rho v \pi D^{3}}{\eta \pi D^{2}} = \frac{inertial \ forces}{viscous \ forces}$

 R_e can be used to determine dynamic similitude between two different cases of fluid flow. It frequently arise when performing scaling of fluid dynamics problems.

The Reynold number (R_e)

 R_e can be defined for several different situations where a fluid is in relative motion to a surface.

	Laminar flow	Turbulent flow
Fluid around sphere object	R _e <1	R _e >700
Fluid in pipe	R _e <2,100	R _e >10,000

Biological and Agricultural Engineering

Magnitude of the kinematic viscosity and R_e

Fluid	η (Pa s) at 20°C	v (m ² /s) at 20°C	R _e (when D=1m and v=1m/s)
Air	1.8×10 ⁻⁵	1.5×10 ⁻⁵	~7×10 ⁴
Water	1×10-3	1×10-6	~1×10 ⁶

- Most surface water systems are turbulent.
- Groundwater flow is nearly always laminar since the characteristic length scale for groundwater systems is the pore scale.

R_e of spherical particles falling at their terminal velocities in air

Dp (µm)	R _e (at 298 K and 1 atm)
20	0.02
60	0.4
100	2
300	20

• Thus, for particles smaller than about 20 μ m in diameter, Stokes' law is an accurate formula for the drag force exerted by the air.

Relationship between R_e and c_d

- For $R_e < 1$, $c_d = 24/R_e$ For $1 < R_e < 1,000$, transitional flow,
 - $c_d = \frac{24}{R_e} + \frac{3}{\sqrt{R_e}} + 0.34$
- An approximate form is
 - c_d=b/R_e^a
- For $1,000 < R_e < 100,000$, $c_d = constant \sim 0.44$
- At R_e ~ 500,000, c_d drops by a factor of about five and a new flow situation has been established.

From: Wegener, "What Makes Airplanes Fly?" Springer-Verlag (1991)

> Knowledge ^{for}Life 10

The motion of a particle in a fluid environment

 $m\frac{dV}{dt} = F(t) - F_d$

What is the settling velocity (v_t) ?

• When Stokes law is obeyed,

$$6\pi r\eta v_t = F(t) = \frac{4}{3}\pi r^3(\rho_p - \rho_l)g = v_t = \frac{2r^2(\rho_p - \rho_l)g}{9\eta}$$

• When Stokes law is not obeyed,

Engineering

Biological and Agricultural

$$\frac{1}{2}c_{d}\rho_{l}v_{t}^{2}A = F(t) = \frac{4}{3}\pi r^{3}(\rho_{p}-\rho_{l})g \implies v_{t}^{2} = \frac{8r(\rho_{p}/\rho_{l}-1)g}{3cd}$$

Knowle

A trail and error procedure

- Calculate v_t using turbulent or laminar flow equation based on assumptions from your best guess.
- 2. Plug v_t into $R_e = D\rho v_t / \eta$, check R_e . If your initial assumption is valid, then problem is solved.
- 3. Make new assumptions based on calculated R_e . Use R_e to calculate c_d .
- 4. Use c_d to calculate v_t .
- 5. If v_t is not equal to previous v_t , using the new value for v_t and repeat from step 2.

Problem Solving #1

Calculate settling velocity (v_t) of a particle with diameter=10 µm and 100µm respectively, in air at 298 K and 1 atm. Assuming density of the particle ρ_p =1000kg/m³

Problem Solution #1

- $\rho_{\rm p}$ =1000kg/m³; $\rho_{\rm l}$ =1.20 kg/m³
- For $D_p = 10 \mu m$

Assume laminar condition,

 $v_{t} = \frac{2r^{2}(\rho_{p} - \rho_{l})g}{9\eta} = \frac{2(10/2 \times 10^{-6})^{2}(1000 - 1.20) \times 9.8}{9(1.8 \times 10^{-5})} = 3.02 \times 10^{-3} \text{m/s}$

Check

 $R_{e} = D_{p} \rho_{1} v_{t} / \eta = \frac{(10 \times 10^{-6})(1.20) \times 3.02 \times 10^{-3}}{(1.8 \times 10^{-5})} = 2.01 \times 10^{-3} <<1$

So, the assumption of laminar condition is valid.

• For $D_p = 100 \mu m$

Assume laminar condition,

 $v_{t} = \frac{2r^{2}(\rho_{p} - \rho_{l})g}{9\eta} = \frac{2(100/2 \times 10^{-6})^{2}(1000 - 1.20) \times 9.8}{9(1.8 \times 10^{-5})} = 0.30 \text{m/s}$

Check

$$R_{e} = D_{p}\rho_{l}v_{t}/\eta = \frac{(100 \times 10^{-6})(1.20) \times 0.3}{1.8 \times 10^{-5}} = 2 > 1$$

So, the assumption of laminar condition is not valid.

In transitional flow, $c_d = 24/R_e + 3/\sqrt{R_e} + 0.34 = 24/2 + 3/\sqrt{2} + 0.34 = 14.5$ $v_t^2 = \frac{8r(\rho_p/\rho_l-1)g}{3cd} = \frac{8 \times 100/2 \times 10^{-6} \times (1000/1.2-1) \times 9.8}{3 \times 14.5} = 0.075$ $v_{t} = 0.27 \text{ m/s}$ Not same with the initial value of v_t , so continue the procedure, $R_e = D_p \rho_1 v_t / \eta = \frac{(100 \times 10^{-6})(1.20) \times 0.27}{1.8 \times 10^{-5}} = 1.8 > 1$ $c_d = \frac{24}{R_e} + \frac{3}{\sqrt{R_e}} + 0.34 = \frac{24}{1.8} + \frac{3}{\sqrt{1.8}} + 0.34 = 15.9$ $v_t^2 = \frac{8r(\rho_p/\rho_l-1)g}{3cd} = \frac{8 \times 100/2 \times 10^{-6} \times (1000/1.2-1) \times 9.8}{3 \times 15.9} = 0.068$ $v_t = 0.26 \text{ m/s}$

Not same with the previous value of v_t , so continue the procedure,

 $R_{e} = D_{p}\rho_{1}v_{t}/\eta = \frac{(100 \times 10^{-6})(1.20) \times 0.26}{1.8 \times 10^{-5}} = 1.7 > 1$ $c_{d} = 24/R_{e} + 3/\sqrt{R_{e}} + 0.34 = 24/1.7 + 3/\sqrt{1.7} + 0.34 = 16.8$ $v_{t}^{2} = \frac{8r(\rho_{p}/\rho_{1}-1)g}{3cd} = \frac{8 \times 100/2 \times 10^{-6} \times (1000/1.2-1) \times 9.8}{3 \times 16.8} = 0.065$ $v_{t} = 0.25 \text{ m/s}$

Not same with the previous value of v_t , so continue the procedure,

 $R_{e} = D_{p}\rho_{1}v_{t}/\eta = \frac{(100 \times 10^{-6})(1.20) \times 0.25}{1.8 \times 10^{-5}} = 1.7 > 1$ $c_{d} = 24/R_{e} + 3/\sqrt{R_{e}} + 0.34 = 24/1.7 + 3/\sqrt{1.7} + 0.34 = 16.8$ $v_{t}^{2} = \frac{8r(\rho_{p}/\rho_{1}-1)g}{3cd} = \frac{8 \times 100/2 \times 10^{-6} \times (1000/1.2-1) \times 9.8}{3 \times 16.8} = 0.065$ $v_{t} = 0.25 \text{ m/s}$

Same with the previous value of v_t . At this point, we may consider the problem solved. $v_t = 0.25$ m/s can be the final answer.